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EMISSIONS AND TOTAL ENERGY CONSUMPTION OF A MULTICYLINDER PISTON 

ENGINE RUNNING ON GASOLINE AND A HYDROGEN-GASOLINE MIXTURE 

by John F. Cassidy 

Lewis Research Center 

SUMMARY 

An experimental program using a multicylinder reciprocating engine was performed 

to extend the efficient lean operating range of gasoline by adding hydrogen. Both 

bottled hydrogen and hydrogen produced by a research methanol steam reformer were 
used. These results were compared with results for aU gasoline. A high-compression­
ratio, 7. 4-liter (472-in. 3) displacement production engine was used. Apparent flame 

speed was used to describe the differences in emissions and performance. Therefore, 
engine emissions and performance, including apparent flame speed and energy loss to 

the COOling system and the exhaust gas, were measured over a range of equivalence 
ratios for each fuel. 

The results were used to explain the advantages of adding hydrogen to gasoline as 
a method of extending the lean operating range. The minimum-energy-consumption 
equivalence ratio was extended to leaner conditions by adding hydrogen, although the 

minimum energy consumption did not change. All emission levels decreased at the 

leaner conditions. Also, hydrogen addition significantly increased flame speed over all 
equivalence ratios. Engine performance and emissions with hydrogen from the methanol 

reformer were about the same as those with bottled hydrogen. 

INTRODUCTION 

Increasing the efficiency of reciprocating engines has constantly been pursued 
since Otto-cycle engines were first used as vehicle powerplants. The important effects 

of fuel consumption on factors such as vehicle range, operating cost, and vehicle 
structures have always been important design considerations. During the past decade, 
the impact of environmental factors and a national interest in energy conservation have 
accentuated the need to produce clean and efficient engines. Many concepts for im­

proving efficiency and meeting emissions standards have been tested and reported in the 



literature; these ideas include using lean mixture ratios, stratified charges, and im­
proved mixture distribution. 

Lean-mixture-ratio combustion in internal-combustion engines has the potential of 

producing low emissions and higher thermal efficiency for several reasons. First, 
excess oxygen in the charge further oxidizes unburned hydrocarbons and carbon mon­
oxide. Second, excess oxygen lowers the peak combustion temperatures, which inhibits 
the formation of oxides of nitrogen. Third, the lower combustion temperatures in­
crease the mixture specific heat ratio by decreasing the net dissociation losses. Fourth, 
as the specific heat ratio increases, the cycle thermal efficiency also increases, which 
gives the potential for better fuel economy. 

Efficient lean-mixture-ratio operation, in terms of good vehicle performance, 

fuel economy, and low hydrocarbon emissions, is limited for several reasons. A re­
duction in indicated mean effective pressure (IMEP) occurs with lean mixtures (refs. 1 
and 2). Also, at ultralean mixture ratios, the cycle-to-cycle and cylinder-to-cylinder 

variations in IMEP are drastically increased, which produces sizable power fluctuations 

and causes engine surge and power train vibrations. Current explanations for these 
variations are flow velocity perturbations at the spark plug and spatial variations of 

turbulence in the combustion chamber. These conditions control the rate of the combus­

tion process; therefore, lean-mixture-ratio operation involves cycle-to-cycle and 
cylinder-to-cylinder variations in flame speed. In addition, as the mixture ratio is 
made leaner, the combustion process slows and occurs over larger crank-angle inter­
vals, thereby causing hydrocarbon emission levels and fuel consumption to rise. Also, 

the thermal boundary layer, or quenching distance, increases with leaner mixture ra­
tios, which also causes hydrocarbon emission levels to rise (refs. 3 and 4). Even 
though excess oxygen is available to oxidize these hydrocarbons, the quenching effect 

of the cylinder wall will still produce a net increase in hydrocarbon emissions. Another 
problem is the lean-mixture-ratio misfire limit, which occurs near the flammability 
limits of the fuel. Cycle-to-cycle and cylinder-to-cylinder variations can cause an in­
dividual cylinder to exceed the lean flammability limits and thus misfire. InCipient 
lean-limit misfire is characterized by high hydrocarbon emissions, rough engine opera­
tion, and poor fuel economy. 

A review of the literature dealing with the problems of lean-mixture-ratio operation 
shows that a fuel with a low lean flammability limit and a high flame speed might yield 
low exhaust emissions at ultralean conditions. Hydrogen was identified in reference 5 
as having those properties and has been the subject of much investigation. Using a small 
quantity, on a weight baSis, of hydrogen as a supplement to gasoline was chosen as a 

way to extend lean engine operation. Onboard generation of hydrogen was selected as a 
feasible way to use hydrogen in a mobile application. The Jet Propulsion Laboratory 
conducted a similar program (refs. 6 and 7) in which hydrogen generated by the partial 

oxidation of gaSOline was used as a fuel supplement for lean engine operation. Various 
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I 
commercial processes to generate hydrogen were analyzed for their applicability. The 
catalytic steam reformation of methyl alcohol (methanol) using engine exhaust heat was 

selected as being the most efficient process to generate hydrogen that was also compact .. 

enough to be carried on a vehicle. One disadvantage is that it would require a second 
fuel and a second fuel system. 

A research system to generate hydrogen by methanol reformation was built and in­

stalled on a multi cylinder engine in an existing engine test setup. An independent and 
parallel program on catalyst evaluation was performed but is not part of this report. 
An engine test program was conducted using gasoline and additions of gaseous hydrogen 
and reformed methanol to evaluate the effects of hydrogen-gasoline fuel mixtures on 

exhaust emissions, extension of lean engine operating limits, and fuel flammability 
limits and combustion flame speed. 

This report presents a brief description of the breadboard methanol reformation 

system and the results of fuel and engine testing. 

The data were taken in the U. S. customary system of units and converted to SI units 
for this report. 

EXPERIMENTAL APPROACH 

Description of Engine 

A 1969 high-compression-ratio (10.5) Cadillac engine with a displacement volume of 
7.4 liters (472 in. 3) was used as the test engine. All design characteristics of the en­

gine are given in table I. Several interesting performance trade-offs are possible with a 

high-compression-ratio engine. The high peak combustion temperatures produce ex­
cessive oxides-of-nitrogen (NOx) emissions at nominal equivalence ratios and, there­

fore, would seem to be inconsistent with reducing NOx emissions. However, Bolt 

(ref. 8) noted that the lean-misfire limit could be significantly extended by increaSing 

the compreSSion ratio. The higher compression ratio produces higher temperatures at 
the start of combustion, which in turn causes higher flame speeds. Consequently, along 
with efficient operation at leaner equivalence ratiOS, high-compression-ratio engines 

might actually have lower NOx emission levels than low-compression-ratio engines. 
Single-cylinder, Comparative Fuels Research (CFR) tests performed by Lee (ref. 9) 

and Brehob (ref. 10) indicated that higher compression ratios at constant equivalence 

ratios slightly increased hydrocarbon emissions. Also, at ultralean conditions, the 

lower flame speeds raise exhaust manifold temperatures and produce excess oxygen, 
which may reduce hydrocarbon emissions. Hydrocarbon emission levels are also influ­

enced by mixture uniformity and combustion chamber geometry. Both investigators 

found carbon monoxide emissions to be unaffected by compression ratio. The benefit of 
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high compression ratio on Otto-cycle efficiency is well recognized. This gain in effi­
ciency might improve fuel economy at lean operation. 

Fuels 

The high-compression-ratio engine required a fuel with an octane rating of at least I 

I

96. The fuel used w a s  a commercially available high-octane, lead-free gasoline; a 
chemical analysis of the fuel is provided in table II. The lower heating value was  deter-

Imined by the bomb calorimeter method, and the results were lower than expected. Each I 

fuel batch w a s  analyzed before use, and for some batches the lower heating value w a s  'i 
I

determined by two laboratories. All results were within 12.0 percent. 
I 

Of all the methods surveyed for the onboard generation of hydrogen, the steam 
reformation of methanol (CH30H; molecular weight, 32.042) appears to be the most ef­
ficient. It has the potential of exhaust energy recovery, and the 589 K (600' F) operating 
catalyst temperature is relatively low. The system converts waste thermal energy in 
the exhaust gases to useful chemical energy. A potential energy enrichment of 10 per­
cent is possible. 

A functional diagram describing the operation of the methanol reformer coupled to 
the engine and the breadboard components is shown in figure 1. The system w a s  de­
signed as a research apparatus and, therefore, no attempt w a s  made to optimize size, 
weight, or catalyst material. In fact, other catalyst materials could result in more en­
ergy recovery and the use of smaller components. Performance instrumentation re ­
quirements also increased the physical size and weight of the system. A feedstock mix­
ture consisting of 1. 1moles of water and 1.0 mole of methanol was  selected. Bench 
tests had indicated that this ratio of methanol to water would produce the highest conver­
sion efficiency and, therefore, the maximum volume flow of hydrogen to moles of mix­
ture. 

The mixture was  pumped from the tank and evaporated in a counterflow heat ex­
changer heated by a small  portion of the engine exhaust gases. The vaporizer heat ex­
changer consisted of 48 coils of 9.53-millimeter-diameter (0.375-in. - d i m ) ,  helically 
wound tubing having a 6.99-centimeter (2.75-in. ) mean diameter. A 0.51-millimeter­
diameter (0.020-in. - d i m )  spring coil was  inserted into the tube in order to promote 
s w i r l  and to centrifuge the fluid to the tube walls .  Hot gas w a s  forced to pass over as 
much of the helical tube as possible. The tube was  located midway in the annulus and 
permanently centered. It w a s  separated from the 5.08-centimeter-diameter (2.0-in.­
d i m )  center core and the 8.89-centimeter (3. 5-in. ) inner diameter of the outside shell 
by longitudinal 0. 38-centimeter (0. 15-in. ) spacers. 

The superheated mixture from the evaporator entered the catalyst chamber, which 
w a s  heated by the same exhaust gas that had passed through the evaporator. Thirty­
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seven 2. 54-centimeter-diameter (1. O-in. -diam) tubes, with a length of 45.7 centime­
ters (18 in.), contained the tightly packed catalyst material. The catalyst material con­
sisted of 3. 2-millimeter-Iong (0. 125-in. -long) pellets of manganese and copper. A 

catalyst material is usually selected for maximum hydrogen production at relatively low 

exhaust gas temperatures. Bench tests confirmed that 0.907 kilogram per hour of hy­
drogen (2 lb/hr) could be produced by the generator operating at 6000 F (589 K). The 
catalyst chamber was 21. 6 centimeters (8.5 in.) in diameter and 64.8 centimeters 

(25.5 in.) long and had a structural weight of 18. 1 kilograms (40 lb). The unused engine 
exhaust gas bypassed the methanol reformer through a remotely adjustable valve. The 
bypass flow was combined with the gas used in the methanol reformer and then dis­

charged to the atmosphere through the stock muffler and tailpipe. 

An analysis of the possible reaction equations, described in the appendix, indicates 
that the catalyst, the mole reaction of methanol to water, and the percentage of the 
methanol-water feedstock that is converted to gaseous products can be selected to pro­

vide the desired engine operating conditions. For instance, these parameters would not 

be the same for maximum hydrogen production and maximum energy recovery from the 
exhaust gas. Also, some unconverted methanol could be used as an antiknock agent 
when using high compression ratios. 

The reformed product gas, which consists of hydrogen, carbon monoxide, carbon 

dioxide, water, and methane, left the catalyst reformer at approximately 533 K (5000 F). 
The specific composition of the product gas depended on the catalyst selected and the 

operating temperatures. The product gas was cooled to 389 K (2400 F) by passing it 

through a heat exchanger located in the engine coolant flow system. This temperature 
was selected to avoid methanol and water condensation. Again, a design trade-off 
occurs. The temperature of the product gas entering the engine should be high enough 
to avoid water condensation. Also, higher initial mixture temperatures produce higher 

flame speeds. However, the higher mixture temperature increases the knocking ten­
dency and reduces volumetric efficiency. The cooled, reformed product gas was then 
introduced into the engine in a plenum between the fuel atomizer and the inlet manifold. 

Product-gas flow rates were controlled by the feedstock flow rate, and the reformer 

system pressure was controlled by a variable-pressure regulator located in the 
reformed-product-gas line. Figure 2 shows the components of the methanol reformer 

system in relation to the Cadillac engine. 
The engine was operated with varying amounts of bottled hydrogen added to gasoline 

in order to provide a basis for performance comparisons with the reformer experiments. 
A hydrogen supply line was connected to the plenum at the same location used by the 

reformer. The supply line contained a flowmeter and a flow-rate control valve. The 

bottled hydrogen was introduced into the intake manifold at ambient temperatures that 
were considerably lower than the 389 K (2400 F) reformer-product-gas inlet tempera­

ture. 
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Test Procedure 

The dynamometer load, or torque, and the engine speed were set to simulate an 
actual vehicle speed of 88. 5 kilometers per hour (55 mph). All accessories were con­
sidered to be in operation and consuming engine power. Vehicle specifications required 

a brake horsepower of 26. 9 kilowatts (36 bhp). The engine torque and engine speed were 
maintained constant at 119.3 joules (88 ft-Ib) and 2140 rpm, respectively, for all equiv­

alence ratios by an automatic engine throttle control system. This had the effect of 
Simulating a constant vehicle speed for all equivalence ratios. The fuel-air mixture ra­
tio was automatically adjusted and established by a commercially available atomizer and 

control system. Fuel at low pressure was atomized and entered a swirl chamber, where 
further evaporation and mixing occurred. The controller set and maintained a mixture 
ratio by continuously measuring the air and gasoline flow rates. This system replaced 
the stock carburetor as an efficient means to vary mixture ratio. Finally, the atomizer 

was installed on the stock intake manifold. 
The lean operating limit was defined as the equivalence ratio where engine torque 

and engine speed could not be maintained by further opening of the throttle. This lean­
limit equivalence ratio was considerably leaner than the equivalence ratio corresponding 
to the minimum drivability limit. A real-time IMEP instrument developed at the Lewis 
Research Center was used to identify misfire conditions. 

The ignition timing was adjusted for minimum energy consumption at constant equiv­
alence ratios. This was done by removing the vacuum advance tube from the distributor 
and rotating the distributor with a remotely controlled actuator. Therefore, the term 
"minimum energy consumption" as used in this report refers to the minimum energy 
consumption at some equivalence ratio where each energy consumption value has been 

minimized with respect to spark timing. Also, the equivalence ratio is defined as the 
wet fuel-air ratio divided by the stoichiometric fuel-air ratio of the fuel or combination 
of fuels used. 

Apparent Flame Speed 

The experimental approach used to evaluate the benefits and limitations of hydrogen­
gasoline mixtures was to relate the emissions levels and the energy consumption to pa­
rameters defining the combustion process and the loss components. Combustion flame 

speed was selected as one way of relating relative combustion and engine performance. 

Apparent flame speed as used in this report is defined as the average velocity of the 
flame as it travels from the spark plug to the innermost piston/cylinder location. The 
combustion interval is the measurement of time used to determine the apparent flame 

speed. It is based on the mass of fuel burned (in percent) calculated from oscilloscope 
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traces of combustion chamber pressure versus crank angle. The procedure for deter­
mining the apparent flame speed was as follows: Combustion chamber pressure was 
measured by a piezoelectric quartz pressure transducer installed in a small chamber 

connected to the spark plug. The frequency response of the pressure measurement, 
including tube and sensor, was 2000 hertz and was computed on a calibration stand that 

produced a known pneumatic square wave. Also, the complete pressure-sensing system 

was checked for phase errors between the pressure signal and the crank-angle signal by 

the methods defined by Lancaster, Krieger, and Lienesch (ref. 11). Continuous phase 
shift and time response checks were performed on the running engine by shorting the 
spark plug and thereby checking for zero area on a pressure-volume display. The pres­

sure signal was displayed on the Y-axis of pressure-versus-crank-angle and pressure­

versus-volume oscilloscope traces. A three-output function generator was connected 
to the engine shaft. The signals produced were a linear voltage with crank angle, which 

was used as the oscilloscope X-axis sweep signal; 10-degree-interval, crank-angle 

markers; and the piston-swept volume Signal. The display, as in figure 3, of chamber 
pressure versus crank angle, for several successive engine cycles, was photographed 
for analysis of the percentage of the mass burned. 

The methods in the literature (refs. 12 to 17) for computing the percentage of the 

mass burned were surveyed. Each method had advantages and disadvantages, usually 
depending on the difficulty of obtaining thermodynamic property data and the complexity 
of the calculations. For this work, the method of Rassweiler and Withrow (ref. 12) 

appeared to offer an accurate and efficient method of analyzing the pressure-versus­

crank-angle oscilloscope traces. The Rassweiler-Withrow method computes a differ­
ence in pressure - the pressure component due to combustion minus the pressure com­

ponent due to piston motion for unburned conditions. The piston-motion pressure 
component is calculated by using adiabatic conditions over a small crank-angle interval. 
The pressure at the end point of this interval depends on the initial and final volume ra­
tio raised to a power equal to the specific heat ratio. The pressure difference is multi­

plied by a factor that depends on the magnitude of the volume at the time of ignition in 
order to calculate constant-volume combustion at each crank-angle interval. Each 
pressure difference is added to the preceding value to result in a continuous summing 
process as a function of crank-angle rotation. Finally, the sum reaches a maximum 

value which, in turn, defines the completion of combustion or the crank angle where 

100 percent of the mass of the charge is burned. The percentage of the mass burned at 
any point in the combustion interval is the sum of the pressure differences, at that 
crank angle, divided by the maximum summation value. 

The percentages of the mass burned were computed from oscilloscope traces of 
combustion chamber pressure versus crank angle (fig. 3). These traces were read by 

moving a digital cursor over the pressure trace. The reading obtained by the cursor 

was used as input data to a computer that was programmed with the Rassweiler-Withrow 
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method. The output consisted of a graph and a table of the percentage of the mass 

burned, the percentage of the volume burned, and the derivative of pressure with re­

spect to crank angle dP/d8 for crank-angle intervals of approximately 1 degree. Fig­

ure 4 is a typical graph of the output for gasoline-air combustion at an equivalence ratio 

of 0.82. 

The combustion interval, in crank-angle degrees, was also calculated by the com­

puter and was defined as the crankshaft rotation that occurred during combustion of 

10 to 90 percent of the mass. The crank angle at 90 percent of the mass burned was 

also used to determine the maximum length of a line originating at the spark plug and 

ending at a point on the circumference of the piston. This distance was used as the max­

imum distance the flame traveled during normal combustion and was found to be about 
10.2 centimeters (4 in.) or about equal to the bore for a wedge-shaped head. Changes 

in the equivalence ratio from rich to lean conditions produce sizable changes in the 

combustion interval. However, for these combustion intervals, the vertical motion of 

the piston with changes in crank angle is relatively small. Hence, the flame travel dis­

tance varies slightly with equivalence ratio. Based on the preceding assumptions, the 

apparent flame speed could be defined according to the relation 

where 

Uf apparent turbulent flame speed, m/sec (ft/sec) 

NE engine speed, rpm 

X maximum distance traveled by flame, cm (in. ) 

ll.8 c combustion interval, deg 

The apparent flame speed was calculated at each equivalence ratio and for each fuel. It 

was used to describe the variations in energy consumption and emissions levels between 

the different fuels. 

Indicated Thermal Efficiency and Energy Balance Measurements 

Two separate calculations were made of indicated mean effective pressure (IMEP). 
Oscilloscope traces of pressure versus crank angle and pressure versus volume were 

photographed simultaneously. Therefore, cycle-to-cycle variations in IMEP deter­

mined from the pressure-versus-volume traces could be correlated with cycle-to-cycle 
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variations in apparent flame speed. Again the analysis of the accuracy of the complete 
pressure-measuring system was performed in the manner reported in reference 11. 

The results indicated that no phase errors existed between the pressure, volume, and 
crank measurements. A second IMEP calculation was made with an instrument pres­
ently under development at the Lewis Research Center. This instrument records, in 

real time, 100 successive pressure-versus-volume traces. The IMEP was calculated 

for each cycle, and then an average value and a standard deviation were determined for 
all 100 cycles. The instrument output was displayed on an analog meter and indicated 
average IMEP in psi. A bar graph of all 100 IMEP calculations was displayed on a 
second oscilloscope. The bar graph is very useful in determining misfire conditions and 

cycles that have very poor combustion. A negative IMEP corresponds to the pumping 
IMEP and signifies a misfire condition. Figure 5 shows how the IMEP bar graphs vary 
with equivalence ratio when the engine is operating on gasoline. Figure 5{f) is an IMEP 

bar graph recorded near the lean limit and showing a misfire cycle. 

An energy balance was performed to determine how the various loss components 
vary with equivalence ratio. At the same equivalence ratio, the apparent flame speed 
and the lean flammability limit are different for each fuel. Also, because the stoichio­

metric fuel-air ratio differs with each fuel, the magnitudes of the air and fuel flows at 
similar equivalence ratios will vary for the different fuels. Hence, a knowledge of how 
the loss components vary between the fuels would help in understanding the relation of 
total energy consumption to equivalence ratio. The energy balance used is a simple 

measurement of the energy in minus the energy out. The measured components that 
make up part of the energy balance are the input horsepower and the indicated horse­
power. Also, a flowmeter and coolant thermocouples were installed in the cooling sys­

tem to measure the energy absorbed by the coolant. However, radiation losses and 
energy absorbed by the lubrication system were not measured. The energy balance was 
checked in the following manner, which also showed the effect of not measuring these 

loss components: When the input energy, the power absorbed, and the energy lost to the 

coolant system are known, the energy remaining in the exhaust gases can be calculated. 
This energy is compared with a value computed from the exhaust flow rate, the average 
exhaust temperature at the exhaust valve, and the exhaust specific heat calculated from 
the Lewis chemical equilibrium program (ref. 1S). The energy balance check showed 

an unbalance of 10 to 15 percent at both rich and lean conditions. However, it can still 
be used to indicate the trends of the various losses. 

Emission Measurements 

A Scott exhaust gas analysis system, Model lOS-H, was used to measure emission 

levels. This system consists of nondispersive infrared measurements for carbon 
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monoxide and carbon dioxide emissions. Flame ionization methods were used to deter­
mine hydrocarbon emissions; the concentrations were measured in parts per million 

of equivalent propane gas. The nitric oxide (NO) emissions were measured with chemi­
luminescent techniques, and the oxygen concentration was measured by using para­
magnetic effects. Known concentrations of gases were used to check the accuracy and 
calibrate the various constituents of the emissions measurement system. Several oper­

ational techniques were established to ensure good accuracy and trouble-free operation. 

First the sample line was heated to 450 K (3500 F). Also, the internal sample lines 
used to measure the hydrocarbon and NOx emissions were heated to 433 K (3200 F). 
As part of the effort to avoid hydrocarbon and nitrogen dioxide (N02) dropout due to 
moisture removal, these emissions levels were determined on a wet basis. All other 
emissions levels were determined on a dry basis. Calibrations using the known gases 

were made just before taking a data point. Nitrogen gas was used to zero the instru­
mentation and to provide a continuously flowing purge through all systems except when 

a sample was taken. This technique eliminated contamination in the system. 
Finally, the converter used to convert N02 to NO was made of molybdenum in order to 
achieve high conversion effiCiencies, as noted in reference 19. A stainless-steel con­

verter had given erroneously low emissions readings because of its very low efficiency 

in converting N02 to NO. The system preCision for all emission components was 
±5 percent. 

The hydrocarbon, carbon monoxide, carbon dioxide, and oxygen concentrations were 

used to determine the experimental fuel-air ratio based on the Spindt method (ref. 20). 

This calculation provides a check on the measured fuel and air mass flow rates. The 
measured fuel-air ratios and the values calculated by the Spindt method differed by 
4 to 5 percent, with the Spindt value being consistently high at both rich and lean condi­

tions. 

RESULTS AND DISCUSSION 

Energy Consumption 

Flame speed. - Theoretical cycle analyses show that,. for similar compression ra­
tios and heat additions, constant-volume combustion processes are the most efficient. 
The reasons are that the maximum possible expansion of the working fluid occurs at 
high temperatures and that a minimum amount of heat is rejected. Consequently, high­

flame-speed combustion processes, which closely approximate constant-volume proc­
esses, should result in high efficiencies. The effect of flame speed on efficiency is 
important in lean-mixture-ratio combustion because the flame speed decreases as the 

equivalence ratio decreases. In fact, the condition of zero flame speed is the theoretical 
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lean flammability limit. 

The effect of adding hydrogen to gasoline on apparent turbulent flame speed is shown 

in figure 6. The hydrogen flow rate was set at a constant value of 0.64 kilogram per 
hour (1. 42 lb/hr) for all equivalence ratios. For the gasoline and hydrogen-gasoline 

test pOints, the ignition timing was adjusted at each equivalence ratio for minimum fuel 

consumption. These different flow conditions define the mass fraction of hydrogen con­
sumed f as the bottled-hydrogen flow rate divided by the sum of the hydrogen-gasoline 
flow rates. The values of f varied slightly with equivalence ratio, with the highest 

value of 0.068 occurring at the leanest equivalence ratios and the lowest value of 0.063 

at the richest ratios. The brake horsepower was maintained at a constant value of 
26.9 kilowatts (36 bhp) for all test points. 

Adding hydrogen to gasoline significantly increased the apparent flame speed. This 

increase occurred at all equivalence ratios but was especially noticeable at lean equiv­

alence ratios. At an equivalence ratio of 0.66, which is close to the lean-limit equiv­
alence ratio of gasoline, the apparent flame speed was 61 percent faster with hydrogen 
enrichment. To verify the magnitude of the increase in flame speed for hydrogen­

gasoline over that for gasoline, a search was made of engine flame speed data in the 

literature. This review showed that two types of turbulent flame speed relation exist. 
The first type states that the ratio of turbulent-to-Iaminar flame speed varies only as 

the engine speed or as the turbulence due solely to piston motion. The second type of 
relation states that the turbulent flame speed has a component due to the laminar flame 
speed and a component due to the engine Reynolds number. The engine Reynolds num­
ber, in turn, depends on the mean piston speed, the diameter of the inlet valve, the 

kinematic viscosity of inlet charge, and the inlet valve lift. Consequently, both types of 

relation state that the variations in turbulent flame speed with equivalence ratio and fuel 
composition are described by the variations in laminar flame speed with equivalence 

ratio and fuel composition. Variations in turbulent flame speed with chamber turbulence 

depend on the engine speed, the inlet valve characteristics, and the kinematic viscosity 
of the inlet charge. The tests described in this report were made at constant engine 
speed and constant inlet valve characteristics, and the differences in the viscosities of 

the fuels were considered to be small. Therefore, the differences in apparent flame 

speed between hydrogen-gasoline and gasoline should be explained by the differences in 
laminar flame speed with equivalence ratio for the two types of fuel. 

The variation in laminar flame speed with equivalence ratio for hydrogen-gasoline 

and gasoline is shown in figure 7. The laminar flame speed theory of Semenov, Zeldo­
vich, and Frank-Kamenetsky was used to determine the laminar flame speeds, as de­
scribed by Barnett and Hibbard in reference 21. The results show that the laminar flame 

speed is greater for hydrogen-gasoline than for gasoline. However, the difference is 

almost insignificant at equivalence ratios below O. 75. This disagrees with the results of 

figure 6, where the greatest differences in apparent flame speed between hydrogen-
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gasoline and gasoline occur at equivalence ratios below 0.75. Also, the maximum dif­
ference in laminar flame speed (fig. 7) is about 8 percent, at an equivalence ratio of 

about 1. 05. At the same equivalence ratio the difference in apparent turbulent flame 
speed (fig. 6) is approximately 19 percent. It becomes apparent that variations in 
turbulent flame speed with equivalence ratio cannot be singularly described by varia­

tions in laminar flame speed with equivalence ratio. Complicating factors are, for 
example, the turbulence generated by the advancing flame front and the very large tur­
bulence scale or swirl effects. These factors will not allow a simple description of the 

turbulent flame speed, such as, that the turbulent flame speed is proportional to the sum 

of the laminar flame speed plus a simple perturbation factor. It is also important to 
consider the validity of the Semenov theory to describe the laminar flame speed with 
equivalence ratio. Many investigators have shown agreement between this theory and 

experiment. However, the Semenov theory, while accounting for molecular diffusion, 
neglects the diffusion of free radicals, which is known to affect the developing flame 
speed. Finally, comparing figures 6 and 7 shows that, for both turbulent and laminar 
flames, hydrogen-gasoline has a higher flame speed than gasoline. 

The effect of adding hydrogen on gasoline's apparent flame speed is contained in 
the factors that control the rate of the combustion process. The flame velocity depends 
on the rate of thermal and mass transport from the burned to the unburned gas. ThiS, 

in turn, depends on the heat and mass transfer across the flame front. At the same 

equivalence ratio, hydrogen induces higher flame temperatures, which increases the 
difference between the temperatures of the burned and unburned mixtures and creates 
a more efficient heat-transfer mechanism. This same temperature difference explains 

some of the reduction in flame speed with leaner equivalence ratios. As the charge gets 

leaner, the flame temperature decreases, which, in turn, lowers the heat transfer to 
the unburned mixture. Other important factors that control heat transfer are the flame 

front area, the heat lost to the chamber wallS, the gas emissivities, and the transport 

properties of the gaseous mixture. A second mode of energy transfer, mass transfer, 
is also affected by adding hydrogen. Molecular diffusion and the diffusion of active rad­
icals due to concentration gradients between the burned and unburned mixtures, along 
with the physical transfer of burning particles into the unburned mixture, strongly influ­

ence flame speed. The chemical series of reactions involved in the combustion process 
is affected by the reaction kinetics, which depend on diffusion of these active radicals 
into the unburned mixture. Hydrogen possesses a high diffusion coefficient and may en­

ter the chemical reaction systems in a manner that produces more active radicals. The 
transport of these radicals also depends on the motion of the gases either due to the mo­
tion of the flame front itself or due to externally induced small- and large-scale turbu­
lence. 

Ignition delay. - The ignition delay period is defined as the time from ignition until 
10 percent of the mass is burned. It is a function of the chemical reactions in the com-
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bustion chamber and, in particular, near the ignition source. The exact mechanism of 

ignition delay is still unknown. However, the author and others believe that some in­
termediate products of combustion are generated in this period that may be required to 
achieve a self-sustaining reaction. A simpler description of ignition delay involves 
the stagnant boundary layer near the spark plug and the chamber wall. The ignition 

delay period is characterized by slow combustion within the volume containing the spark 
plug and the quiescent wall boundary layer. The energy release is extremely restricted 
within this volume for a period of time. Variations in the ignition delay period may 

cause cycle-to-cycle variations in peak cylinder pressure and IMEP. Figure 8 shows a 
sizable reduction in ignition delay time with the addition of hydrogen for all equivalence 
ratios. The advantageous thermal properties of hydrogen appear to diminish the ther­
mal loss from the developing flame kernel and to quicken the energy release rate. 

~lame speed and energy balance. - The distribution of engine energy among the 

various losses associated with engine operation was correlated with the calculated ap­
parent flame speed for gasoline and hydrogen-gasoline. The combustion temperature 

must be known to explain flame speed and the differences in losses between the two 
fuels. Since the combustion temperature was not measured, theoretical adiabatic flame 
temperatures were calculated for the range of equivalence ratios tested by using the 
Lewis chemical equilibrium program (ref. 18). These temperatures are shown in fig­

ure 9 as a function of apparent flame speed calculated from the test points for gasoline 

and hydrogen-gasoline. These flame temperatures are theoretical, but combustion 
temperatures in real engines would probably show similar trends with both gasoline and 
hydrogen-gasoline. For the same apparent flame speed, which occurs at markedly dif­

ferent equivalence ratiOS, gasoline has a higher combustion temperature. However, 
for the same equivalence ratio, the theoretical adiabatic flame temperature is slightly 
lower for gasoline than for hydrogen-gasoline. 

Table III shows the various components used in the energy balance. The compo­

nents with and without hydrogen enrichment are compared at three equivalence ratios. 
The 0.80 and O. 69 equivalence ratios were chosen because they are the minimum­
energy-consumption ratios for gasoline and hydrogen-gasoline, respectively. The 0.98 

equivalence ratio was chosen because at this ratio the apparent flame speed for gaSOline 
is the same as that for hydrogen-gasoline as its minimum-energy-consumption equiV­

alence ratio of O. 69. Therefore, the second and last rows represent the special case 
of identical flame speeds for hydrogen-gasoline and gasoline. As previously noted and 

shown in figure 6, adding hydrogen significantly increases apparent flame speed. This 

same effect is noted in table III, where at each equivalence ratio adding hydrogen pro­
duces a higher flame speed. The higher flame speeds resulting from adding hydrogen 
produce larger energy losses to the cooling system. Higher flame speeds correspond 
to higher combustion temperatures, which, in turn, force larger energy losses to the 
cooling system. 
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At the same equivalence ratio, the energy lost to the exhaust flow is less with 
hydrogen-gasoline than with gasoline. However, both fuels have about the same energy 
loss to the exhaust flow at equivalence ratios above 0.80. At this equivalence ratio, 
both fuels have high apparent flame speeds, which, in turn, cause less energy to be 

lost to the exhaust flow. At the 0.69 equivalence ratio, the flame speed with hydrogen­

gasoline is 61 percent higher than with gaSOline. At this equivalence ratio, the energy 
lost to the exhaust flow with hydrogen-gasoline is 37 percent less than with gasoline. 

The required input energy is the sum of all the loss components. At equivalence 

ratios below 0.80, hydrogen-gasoline requires less input energy because the much 

higher flame speeds cause less energy to be lost to the exhaust flow. At equivalence 
ratios above 0.80, there is a slight increase in the input energy required for hydrogen­
gasoline. This increase is again due to the higher flame speeds of hydrogen-gasoline 

producing higher combustion temperatures and larger losses to the cooling system. 
Another interesting comparison to make in table III is between the flame speeds in 

the second and the last rows. A flame speed of approximately 34 meters per second 
(113 ft/sec) occurs at an equivalence ratio of O. 69 for hydrogen-gaSOline, but at an 
equivalence ratio of O. 96 for gasoline. For this case, less energy loss to the COOling 
system occurs with hydrogen-gasoline. This then poses the question, "Can two fuels 
exhibiting the same apparent flame speed produce different combustion temperatures?" 

Apparent flame speed as a function of equivalence ratio calculated in the Lewis chemical 
equilibrium program (ref. 18) was combined with the results of figure 6 to form fig-
ure 9. It shows the variation of adiabatic flame temperature with flame speed for the 
two fuels. At the same flame speed, gasoline has the higher adiabatic flame tempera­

ture. This is consistent with the higher energy losses to the cooling system with gaso­
line, as noted in table ill for the constant-flame-speed comparisons. This same effect 
is reflected in the higher exhaust manifold temperature for gasoline (last column of 

table ill). 

Total energy con~tion. - The total energy consumption was obtained over a 
range of equivalence ratios for gasoline, gaSOline with bottled hydrogen, and gasoline 
with hydrogen produced by the methanol reformer. A sample analysis of the reformed 

methanol product gas is contained in table N, which shows the composition, the mole 
fraction, the flow rate, and the energy content. For a conversion efficiency of 37 per­
cent, a hydrogen flow rate of 0.231 kilogram per hour (0.51 Ib/hr) was produced, and 
the gain in energy due to the system's endothermal reactions was approximately 3 per­

cent. The total energy consumption was computed by multiplying the gasoline flow rate 
by its lower heating value and adding the product of the liquid-methanol flow rate into 
the reformer and its lower heating value of 4802 joules per gram (8644 Btu/lb). 

The energy consumption plotted as a function of equivalence ratio in figure 10 shows 
that the minimum energy consumption is the same for each fuel. However, the mini­
mum energy consumption occurs at lower equivalence ratios for both hydrogen-gasoline 
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mixtures than for gasoline. The minimum-energy-consumption equivalence ratio is 
lowest for gasoline with bottled hydrogen because the hydrogen flow rate of 0.635 kilo­

gram per hour (1. 4 lb/hr) is faster than the 0.231 kilogram per hour (0. 511b/hr) 
produced by the methanol reformer. As previously discussed, adding hydrogen causes 

higher apparent flame speeds, which, in turn, control the amount of input energy lost to 
the exhaust gas and to the cooling system. The higher apparent flame speed occurring 
with the O. 635-kilogram-per-hour (1. 4-lb/hr) hydrogen flow (table III) accounts for the 

slight increase in total energy consumption for gasoline with bottled hydrogen at equiv­
alence ratios from 0.74 to 1. 05. This increase in energy consumption occurs as an in­

crease in energy loss to the COOling system. Total energy consumption is significantly 
lower at equivalence ratios below 0.70 for both hydrogen-gasoline mixtures at the same 

flow rate. It appears that modest additions of hydrogen increase the flame speed suf­

ficiently to allow smooth and efficient lean operation. 
The energy consumption data presented in figure 10 were obtained on different days. 

For gasoline and gasoline with bottled hydrogen, the tests were repeated to give confi­

dence in the results. Before operating the engine with either hydrogen-gasoline mix­

ture, energy consumption, emissions, and performance data were obtained with gaso­
line to ensure that the gasoline data did not vary. The curves of figure 10 represent a 

least-squares fit to the experimental data. 

As mentioned previously the ignition timing was adjusted to minimum energy con­
sumption at a fixed equivalence ratio. However, the coupling of the methanol reformer 
to the engine through the exhaust flow and the inlet manifold flow made ignition timing 

changes very difficult for the gasoline-with-reformed-hydrogen cases. Consequently, 

the timing used for those cases was that used for gasoline. The ignition timing angles 
were 48 0 advance for gasoline and gasoline with reformed hydrogen. The timing angles 
for gasoline with bottled hydrogen varied from 230 advance at rich equivalence ratios to 

540 at the lean limit. 
Indicated thermal efficiency. - The improvement in indicated thermal efficiency 

with the addition of hydrogen to gasoline is shown in figure 11. Adding either bottled 

hydrogen or hydrogen from reformed methanol allows leaner equivalence ratios from 

reduced loss to the exhaust gas as the flame speed increases. Again, the lower hydro­
gen flow rates produced by the reformer still provide efficient operation at this constant 

energy level. At equivalence ratios greater than 0.85, all the fuels increased the flame 

speed (higher combustion temperature), which caused more energy to be absorbed by 

the cooling system. This condition causes, in turn, a general decrease in thermal ef­
ficiency with increasing equivalence ratio. 

Emission Results 

Oxides-of-nitrogen emissions. - The emission levels of NOx as a function of equiv-
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alence ratio for gasoline and hydrogen-gasoline are given in figure 12. Extending the 
efficient operating range into leaner mixtures by mixing hydrogen with gasoline reduces 

NOx emission levels considerably. A reduction by a factor of 2 in NOx levels is shown 

in figure 12 when comparison is made on the basis of minimum-energy-consumption 
equivalence ratios. The stock, 1969 high-compression-ratio engine, which does not 
have NOx emission controls, operates at an equivalence ratio of O. 94 at the simulated 

road-load condition. Comparing NOx levels at the 0.94 equivalence ratio and the 
minimum-energy-consumption equivalence ratio of 0.66 for hydrogen-gasoline shows an 
even larger reduction, by a factor of 5. Even more dramatic reductions in NOx levels 
occur if the hydrogen-gasoline equivalence ratio is extended to equivalence ratios below 

O. 60. Operating at equivalence ratios between O. 55 and O. 60 reduces NOx emissions by 
a factor of 19, but with an increase of 3 to 6 percent in energy consumption over the 
minimum. However, the problems of reduced vehicle drivability at lean equivalence ra­

tios limits the extent of lean operation and, therefore, the possible NOx emission reduc­

tion. Smooth engine operation, defined as operation without any engine vibrations or 
power surging and with good power response, deteriorated rapidly at equivalence ratios 
below the minimum-energy-consumption values. The explanation is that lean operation 

reduces flame speeds and, therefore, decreases indicated power. This effect is magni­
fied by variations in the fuel-air mixture ratio, which increase with leaner equivalence 
ratios and which occur on a cycle-to-cycle and cylinder-to-cylinder basis. Therefore, 

NOx emission reduction comparisons should not be made at equivalence ratios below the 

minimum-energy-consumption values. 
Figure 12 also indicates that, at similar equivalence ratios, hydrogen-gaSOline 

produces higher NOx levels than gaSOline. This again can be explained by the higher 

peak combustion temperatures that occur with hydrogen-gasoline fuels as compared with 

gasoline operating at the same equivalence ratio. 
The larger NOx emissions produced by gasoline with reformed hydrogen are difficult 

to explain because the flame speed instrumentation was not available for these tests. The 

emissions analyzer was calibrated before each data point, and NOx emission levels were 
measured with the engine running on gasoline before each reformer test in order to es­
tablish consistent emission levels between data runs. However, the reformer product 

gas entered the engine at a temperature of 389 K (2400 F), which raised the total inlet 
temperature. This higher inlet temperature would increase the peak combustion temper­
atures and thus explain the higher NOx emission levels. 

Hydrocarbon emissions. - The hydrocarbon emission levels are plotted as a function 

of eqUivalence ratio in figure 13. The hydrocarbon emission levels are characterized 
as parts per million of equivalent propane (C3H8), and the flame ionization detector was 
calibrated with gases containing known concentrations of ppm C3H8 in air. Figure 13 
shows that the hydrocarbon emission levels of hydrogen-gasoline are slightly higher than 

gaSOline levels when the comparison is made at the minimum-energy-consumption equiv-
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alence ratios. However, the increase in hydrocarbon emissions is not as large as gen­
erally reported by investigators using lower-compression-ratio engines. Again, the 

deteriorating vehicle drivability below the minimum-energy-consumption equivalence 
ratios makes hydrocarbon emission level comparisons below these equivalence ratios 

meaningless. Comparisons based on the same equivalence ratio show that, at ratios 

above O. 80, hydrogen-gasoline produced lower hydrocarbon emission levels. Again, 
this condition is different from results reported by investigators using lower­
compression-ratio engines, where the hydrogen-gasoline hydrocarbon levels are higher 

than gasoline levels at all equivalence ratios. Perhaps the higher combustion tempera­
tures associated with higher compression ratios may alter the complex system of chem­
ical reactions in such a way that less hydrocarbons are formed or that more hydrocar­

bons are oxidized into other components in the hydrogen-gasoline operation. A second 

possible explanation, confirmed by results from the chemical kinetics program of 
Bittker and Scullin (ref. 22) using methane-air and methane-hydrogen-air, is the for­
mation of formaldehyde (CH20) with hydrogen enrichment. Formaldehyde can be con­

sidered as a hydrocarbon and would not be detected by flame ionization detector instru­

mentation. Thus, the rich equivalence ratio results of figure 13 for hydrogen-gasoline 
may be distorted by the inability to measure formaldehyde concentrations. 

Carbon monoxide emissions. - The carbon monoxide emission levels as a function 

of equivalence ratio are shown in figure 14. Emission levels for gasoline with reformed 

hydrogen were similar to gasoline levels. As the equivalence ratio was extended to 
leaner values, the carbon monoxide levels remained fixed and low. Figure 14 also shows 

that gasoline with bottled hydrogen produced the lowest carbon monoxide emissions at all 

equivalence ratios. The formation of carbon monoxide is a complex process and is not 
understood for either gasoline or hydrogen-gaSOline. Performing the same chemical 
kinetics study that was used to explain the hydrocarbon emissions (ref. 22) showed that 

the formation of formaldehyde and the HCO radical can lower the carbon monoxide con­

centration in hydrogen-gaSOline. 
Performance of methanol reformer. - The methanol reformer system was designed 

as a research tool to check and verify the concept of steam reformation of methanol as 

an efficient way to produce hydrogen. The size, weight, and location of components with 

respect to the engine were dictated by the desire to observe and measure the factors in­
fluenCing the overall system performance. Certain control problems occurred. Insta­

bilities originated either in the engine or the reformer system and were passed on to the 

other component, which changes a stable condition into an unstable one. For instance, 
if the engine surged because of misfire at lean operation, oscillations in the exhaust flow 
rate and the manifold pressure also occurred. Since the exhaust flow was used to heat 
the catalyst, these flow oscillations caused oscillations in the reformer-product flow 

rate. The reformer-product flow rate was partially controlled by the manifold pressure, 
so manifold instabilities augmented any existing reformer-product flow instabilities. 
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This type of reformer-engine system should contain an automatic closed-loop control; 

however, one was not available for this program. 
A definite limitation of a methanol steam reformation system is the need for a 

second fuel and a second fuel system in the vehicle. With proper design and catalyst 

selection, this disadvantage may be offset by the prospect of recovering as much as 

10 percent of the energy lost to the exhaust gas. Also, in view of decreasing petroleum 

resources, a system using 100-percent reformed methanol might be an interesting sup­

plementary or alternative fuel system. 

SUMMARY OF RESULTS 

Apparent flame speed and energy balance measurements were used to explain per­

formance and emissions differences between gasoline and gasoline enriched by bottled 

hydrogen and hydrogen produced by a methanol reformer. 

For a single load and engine speed condition, a multi cylinder engine operating with 

lean mixture ratios with and without hydrogen addition gave the following results: 

1. Adding small amounts of hydrogen to gasoline produced efficient lean operation 

by increasing the apparent flame speed and reducing ignition lag. 

2. The actual minimum energy consumption was the same for gasoline and hydrogen­

gasoline, although the minimum-energy-consumption equivalence ratio decreased from 

0.79 to 0.67. 

3. Exhaust emissions levels followed the classical trends with changing equivalence 
ratio. Oxides-of-nitrogen emission levels at the minimum-energy-consumption equiv­

alence ratios were appreciably lower for hydrogen-gasoline than for gasoline. At the 

same equivalence ratio, in the range of practical interest, NOx emissions were higher 

for hydrogen-gasoline than for gasoline because of hydrogen's higher peak combustion 

temperatures. 

4. Gasoline with reformed hydrogen gave the highest NOx emission levels. The 

reformer must produce gas at a high enough temperature to avoid water or methanol 

condensation. The high inlet temperature can cause higher peak combustion tempera­

tures and, therefore, higher NOx emission levels. 

5. The hydrocarbon emission levels of hydrogen-gasoline did not follow the trends 

reported from lower-compression-ratio engines, in that hydrocarbon emission levels 

were lower with hydrogen enrichment at equivalence ratios above 0.80. Hydrocarbon 

emission levels were somewhat higher for hydrogen-gasoline at minimum-energy­

consumption equivalence ratios. However, the combustion process for gasoline with 

bottled hydrogen produced the lowest carbon monoxide emission levels. 

6. The steam reformation of methanol is potentially an energy- conserving way to 

produce onboard hydrogen. A closed-loop control system is required to maintain engine 
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reformer stability and to optimize the total performance and efficiency of the combined 
reformer-engine system. 

Lewis Research Center, 

National Aeronautics and Space Administration, 
Cleveland, Ohio, March 15, 1977, 

505-05. 
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APPENDIX - HYDROGEN GENERATION BY STEAM REFORMATION OF METHANOL 

The steam reformation of methanol uses the following chemical reaction system. A 
, 

primary assumption is that the product gas, or constituents making up the right side of 
the equation, will consist of CH30H, H20, H2, CO2, CO, and CH4. So 

Catalyst 
CH30H + (a)H20 • (b)H20 + (C)CH30H + (d)H2 + (e)CO + (f)C02 + (g)CH4 (1) 

Equation (1) can,also be considered in terms of a reactant solution consisting of M 

moles of CH30H plus W moles of H20. Then, if a dry analysis is made on the product 

gas, we define the following conversion factor: 

Y subscript = Percentage of converted methanol per conversion reaction (2) 

If this factor is determined experimentally, the conversion ratio X can be determined. 
On the basis of 1 mole of CH30H, equations (1) and (2), along with the conversion ratio 
X, form the following reaction: 

+ XYCOCO + XYCH CH4 4 

Consequently, for a particular catalyst material and operating condition and the meas­

ured values of Y CO ' Y CO' and Y CH ' the conversion ratio X is determined by 
2 4 

(3) 

(Total product moles per mole of CH30H vapor) - (: + ~ 
X = . . . . - - - -- . -._- (4) 

(: + 3) Y CO
2 

+ (: + 3) Y CO + (: + ~ Y CH4 - (: + 1) 

With X known, we can now determine the resulting individual constituent flow rates in 

the product gas. 
It is also interesting to consider the difference in the lower heating values between 

the feedstock and the product gas. From equations (3) and (4) with the lower heating 
values of H2, CO, and CH4 and the bench tests that defined their concentrations in the 
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product gas, on a per-gallon-of-feedstock basis, 

(product-gas~ lower heating = 278.7 J/llter + 278. 7(X) J/llter 
value 

= 41 686 Btu/gal + 3499(X) Btu/gal (5) 
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TABLE I. - ENGINE SPECIFICATIONS 

Bore, cm (in.) . . . . . . . . . . 

Stroke, cm (in.) . . . . . . . . . 

Piston displacement, liter (in. 3) 

Compression ratio. . . . . . . . 

Horsepower at 4400 rpm, kW (bhp) 

Torque at 3000 rpm, J (ft-Ib) .. 

Connecting rod length, cm (in.) . . 

Inlet-valve diameter, cm (in.) .. 

Exhaust-valve diameter, cm (in. ) . 

Inlet-valve lift, cm (in. ). . . 

Exhaust-valve lift, cm (in.) . 

Valve rocket arm ratio . . . 

Valve timing: 

Intake valve opens, deg BTDC 

Intake valve closes, deg ABDC 

Exhaust valve closes, deg ATDC 

Exhaust valve opens, deg BBDC 

10.92 (4.30) 

10.31 (4.06) 

.74 (472) 

... 8.5 

280 (375) 

712 (525) 
17.15 (6.75) 

. 5.08 (2.00) 

4. 13 (1. 625) 

1. 12 (0. 440) 

1. 15 (0. 454) 

1. 65 

18 
114 

58 

70 

TABLE n. - CERTIFIED GASOLINE ANALYSIS 

Specific gravity: 

At 283 K (500 F) . 

At 289 K (600 F) . 

At 294 K (700 F) . 

At 300 K (800 F) . 

Distillation (ASTM D86): 
Indicated boiling pOint, K (OF) 

10-Percent evaporation, K (OF) . 

30- Percent evaporation, K (OF) . 

50- Percent evaporation, K (OF) . 

70- Percent evaporation, K (OF) . 

90- Percent evaporation, K (OF) . 

Evaporation point, K (OF) . 

Amount recovered, percent. 
ReSidue, percent ..... . 

Amount lost, percent . . . . 

Reid vapor pressure (ASTM D323), Pa (psi) 
Research octane number 

Motor octane number . . 

Lead content, g/100 cm 3 

Sulfur content, mg/ cm 3 . . 

Gum content, mg/100 cm3: 

Before washing . . . . . 

After washing . . . . . . . . . . . . . 

Lower heat of combustion, J/kg (Btu/lb) 
Aromatics content, vol % 
Olefins content, vol % . 
Paraffin content, vol % 
Carbon content, wt % . 
Hydrogen content, wt % 

. 0.788 

0.784 

0.780 

0.775 

773 (932) 

335. 3 (143.6) 

367.3 (201. 2) 
385. 3 (233. 6) 

448.3 (347.0) 

459.3 (366.8) 

96 

1.5 

2.5 

44 127 (6.4) 

· 101. 3 

· 90.1 
0.0001 

<0.04 

· . 7.2 
. ........ <1 

41 425 496 (17 811) 

50. 1 

· . 2.1 

· 47.8 
.88.86 

· 11. 80 
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I 
I 
I 
I. 
I 

TABLE III. - ENGINE ENERGY BALANCE 

Hydrogen Equiv- Apparent flame Input Energy Energy Indi- Brake 

lost to lost to cated horse-

Exhaust 

manifold 

tempera-

additiona alence speed energy 

No 

Yes 

No 

Yes 

Yes 

No 

ratio 

I 0.69 

I bO. 69 

1 bO. 80 

1 0.80 

1 0.98 

I. 0.96 

I---........ ---t---,----j cooling exhaust horse­
m/sec ft/sec kW hp 

power 

I
I 22 

35 

/ 31 

1 40 

/ __ =.5 L 34 

system power ture 
1----.--1 kW hp r---r---t kW hp t--,.-----1 

kW hp kW hp K 

I 
1 

36 1322 71 11311175 r 39 52 51 68 

11 ~81158 I 42 156 1 32 +-4-3-.. +-3-7 -+-5-0-+-2-7-+-36--+-8-9-6 -+-1-1-5-3-1 

35 47 27 989 

114 

1 

1 

/1181158141 155137 49 

11221163145 ]601 33 T4-4-+-37--+-5-0+-2~7+3-6-+-94-3-+-1~2-3-8-1 
36 1286 100 34 46 27 

132 

969 

1 

I .~13 
/1261169 149 165/35 47 

11221164/46 162 r ;4-+-46----i-3-7~4-9--+---27----+-3-6--t-9-8-1-+--13-0-6-t 
-~ "--~'___-'-_---..._...L-_-'-__ ..... 

36 1315 146 37 49 27 986 

a Flow rate, 0.635 kg/hr (1. 4 lb/hr). 

bMinimum-energy-consumption equivalence ratio. 

TABLE IV. - REFORMER ANALYSIS 

[Conversion efficiency, 37 percent.] 

Component Content Flow rate Energy 

mole per mole mole fraction kg/hr lb/hr J/min Btu/min 

of methanol 

Reactant 

Methanol 1.0 ---- 3.77 8.34 1259670 1194 

Water 1.1 ---- 2.33 5. 16 --------- ----

I Product gas 

Methanol 0.63 ---- 2.37 5.22 858770 814 

Water .87 ---- I. 83 4.02 --------- ----

Hydrogen .97 70.4 .23 .51 461 035 437 

Carbon .14 11.0 .46 1. 02 75960 72 

monoxide 

Carbon .23 18.6 1. 21 2.64 --------- ----
dioxide 

Methane 0 0 0 0 --------- ----
Total ---- ---- ---- ---- 1395765 1323 
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Figure 1. - Schematic diagram of methanol reformer system. 
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Figure 2. - Methanol reformer system in relation to engine. 

Figure 3. - Oscilloscope traces of chamber pressure as function of crank angle. Engine, 
1969 Cadillac; brake horsepower, 27 kW (36bhph engine speed, 2140 rpm; fuel, 
gasoline; equivalence ratio, 0.87. 
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o 

(a) Engine startup. Mean, 22 063 Pa (3.2 psi); standard deviation, 
64 811 Pa (9.4 psi). 

0 ____________________ • ______ __ 

o 

(c) Engine speed, 2140 rpm; torque, 119 J (88 ft-Ib); equivalence 
ratio, 1.0; mean, 282 687 Pa (41.0 psi); standard deviation, 
4826 Pa (0.7 ps i). 

(e) Engine speed, 2140 rpm; torque, 119 J (88 ft-Ib); equivalence 
ratio, 0.77; mean, 281997 Pa (40.9 psi); standard deviation, 
61 364 Pa (8.9 psi). 

o 

o 

(b) Idle. Engine speed, 1000 rpm; mean, 31 716 Pa (4.6 psi); 
standard deviation, 53 779 Pa (7.8 psi). 

(d) Engine speed, 2140 rpm; torque, 119 J (88 ft-Ib); equivalence 
ratio, 0.81; mean, 286 134 Pa (41.5 psi); standard deviation, 
52401 Pa (7.6 psi). 

(f) Lean limit; equivalence ratio, 0.66; mean, 175128 Pa (25.4 ' 
psi); standard deviation, 67362 Pa (9.77 psi). 

Figure 5. - Bar graphs of indicated mean effective pressure as function of equivalence ratio. 
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Figure 6. - Apparent turbulent flame speed as function of equivalence ratio. Engine speed, 2140 rpm; brake horsepower, 27 kW (36bhp). 
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Figure 7. - Apparent laminar flame speed as funct ion of equimlence ratio. 
In i t ia l  temperature, 6M) K (6200 F); in i t ia l  pressure, 962887 Pa (140psi). 
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