

All you ever needed to know about Product Development and were too shy to ask

Professor Baback Yazdani

4th November, 2008

Contents

- 1. Why is Product Development Important?
- 2. What is Product Development?
- 3. Generic Processes and Theory
- 4. Role and State of Automotive Industry
- 5. Product Development in Automotive Industry
- 6. Generalisations
- 7. The Shape of Things to Come

Contents

1. Why is Product Development Important?

- 2. What is Product Development?
- 3. Generic Processes and Theory
- 4. Role and State of Automotive Industry
- 5. Product Development in Automotive Industry
- 6. Generalisations
- 7. The Shape of things to come

Thought for the day:

Product Development is the key to the success, prosperity and long-term sustainability of all companies, organisations, and material condition of our lives

A small mistake in Product Development can cost the reputation of a company

The A-Class Moose Test (1997)

Mercedes Benz introduced the A-Class in 1997 after a \$1.5 Bn Development.

The Swedish magazine, Teknikens Vaerld" (World of Technique) tested one A-class at 60Km/h, simulating a moosetest, and the car flipped over!

2500 newly-sold cars were recalled

...and sales almost stopped!

Mercedes added stability control (ESP) and redesigned the car's suspension

Cost of Change = \$ 250,000,000

A serious mistake in Product Development can cost the company

Story of Ford Edsel

NOTTINGHAM BUSINESS SCHOOL Nottingham Trent University

- Biggest market research and marketing exercise in automotive history
- Development cost = \$400 M (equivalent of \$6.7 Bn in 2007)
- Planned to sell 200,000/year
- Sold
 - 58,000 in 1958
 - 16,000 in 1959

Ford Edsel nearly bankrupt Ford in the late 50s

Repeated mistakes in Product Development will cost the company

Firestone disaster (2001)

More than 250 deaths and 700 injuries in the US were as a result of Ford Explorers rolling over after the tread separated on Firestone tyres.

22 May:

Ford to replace **13 M** Firestone tyres and take a **\$3 Bn** charge

18 July:

Ford reports **\$551M** quarterly loss

1 Aug:

Ford's market share falls by 22%

17 Aug:

Ford cuts 10% of its white-collar workers

17 Oct:

First consecutive loss in a decade

30 Oct:

Ford CEO Jacques Nasser resigned

Logarithmic scale plot of cost of change to fix the Firestone problem

Product Development determines the outcome

Superior capability in Product Development will renew the company and increase its profits over time

Toyota's PD capability gives it longterm advantage

- Toyota's Programme costs have been consistently 50-75% of European and US car makers
- Toyota's PD lead times are nearly half those of European and US car makers
- Toyota's Product Quality has consistently been at the top of JD Powers Quality Metrics

Contents

- 1. Why is Product Development Important?
- 2. What is Product Development?
- 3. Generic Processes and Theory
- 4. Role and State of Automotive Industry
- 5. Product Development in Automotive Industry
- 6. Generalisations
- 7. The Shape of Things to Come

	High Complexity Low	
High	Aerospace Major Construction Automotive	Fashion Textiles Cosmetics Food / Drink
Low	Electronic Products White Goods	Commodities - Paper - Glass - Building Materials

Terminology

Product

Something used by a customer or something sold by an enterprise -

not necessarily physical and discrete

Aircraft, kettle, components, insurance, bank account, educational programme, training course,

Product Development

Flow of activities from identification of market need to production and use of product

Design

Execution of ideas, manifest in plans to deliver it

One of four fundamental processes in business

- 1. Product Development
- 2. Product Delivery
- 3. Planning, Execution, and Control: Management
- 4. Learning
- 5. Support and Supply

Time

I/O of Product Development

Contents

- 1. Why is Product Development Important?
- 2. What is Product Development?

3. Generic Processes and Theory

- 4. Role and State of Automotive Industry
- 5. Product Development in Automotive Industry
- 6. Generalisations
- 7. The Shape of Things to Come

Fuzzy front-end and development funnels

Product Development cash flow

Product life-cycle

The Four Economic Objectives

Expense Overrun

Cost Overrun

Performance Shortfall

Schedule Delay

Product life-cycle pressures

Timing and impact of management attention and influence

Contents

- 1. Why is Product Development Important?
- 2. What is Product Development?
- 3. Generic Processes and Theory
- 4. Role and State of Automotive Industry
- 5. Product Development in Automotive Industry
- 6. Generalisations
- 7. The Shape of Things to Come

Major developments in industrial management

production control

Scientific,

Ford:

/ Henry

FW Taylor

Adam Smith: Productivity due to Division of Labour

Charles Babbage: Mathematical treatment of

organisation of production

by Layout Design, Labour Control, Motion Study
GM vs Ford: Emergence of Horizontal Integration
& competition through product differentiation

First Application of Statistical Quality Control
A. P. Slone's application of Financial Statistics

Deming's teaching: Japan Adoption of TQM

T. Ohno: JIT and Lean Production

1770s 1840s 1900s 1920s 1930s 1950s 1960s

Development of business strategies in AI

Tighter Financial Controls Less investment Restructuring

Automotive industry

- An industry over 100 years old
- One of world's largest industries
- Turn over of \$1.4+ Trillion a year
- Employing more than 20 Million people
- One of the most organised and complex
- Innovator of industrial management practices
- Over capacity of 20 million units / year
- Intense international competition
- most systemised in Product Development

World's major automotive markets (2002-06)

One of world's largest industries (2007)

World Top 20 Vehicle Producing Countries

Top 20 vehicle producers (2007)

Top 10 automakers' market capitalisation (2007)

(€Bns)

Over capacity in global auto industry

Trends

Drivers of new product development in AI

- 1. Environment, fuel prices, sustainability
- 2. Legislation
- 3. Intense international competition
- 4. Extremely sophisticated customers
- 5. Fragmentation of the markets
- 6. Inclusion of new technologies

Contents

- 1. Why is Product Development Important?
- 2. What is Product Development?
- 3. Generic Processes and Theory
- 4. Role and State of Automotive Industry
- 5. Product Development in Automotive Industry
- 6. Generalisations
- 7. The Shape of Things to Come

Vehicle attribute decomposition

Time to market for complete new vehicle

	Time to Market	Design Freeze <st></st>
Toyota	38	15
Honda	32	18
Mazda (655)	38	18
Nissan	28	19
Ford/J & LR	51	25
Renault	49	26
DaimlerChrysler	39	28
General Motors	36 (SI)	30

Design engineering & development

Develop Brand-Specific Aesthetic Design Language

Create ideas and concepts to anticipate future Consumer requirements Design program exterior, interior, and underthe-hood and create CAD geometry

Engineering & Prototyping

Verification and crash test

Would you like to see the actual crash test clips?

Synchronisation & mass production preparation

Improved PD System

Contents

- 1. Why is Product Development Important?
- 2. What is Product Development?
- 3. Generic Processes and Theory
- 4. Role and State of Automotive Industry
- 5. Product Development in Automotive Industry

6. Generalisations

7. The Shape of things to come

Product Development: Value-add outputs SCHOOL Value-add outputs SCHOOL

NOTTINGHAM

Criteria for successful new products

- Offer a unique feature
- Higher relative quality
- Solution to customers' problems
- Reduction of total customer costs
- Being the first of its kind

How fast = speed of development

How Many = throughput

How much investment = cost of development

Product Development capability

PD Capability Metric

Time Compression

i.e. How much can you reduce the lead-time of Product Development

At Program Level : Program Time Compression Program Performance = Δ tc

At Business Level : Rate of Time Compression PD Performance = dtc / dt

No new Products

No future for that company

Contents

- 1. Why is Product Development Important?
- 2. What is Product Development?
- 3. Generic Processes and Theory
- 4. Role and State of Automotive Industry
- 5. Product Development in Automotive Industry
- 6. Generalisations
- 7. The Shape of Things to Come

Do you want to see more?

Apologies for over-running on time!

??

Monitoring queues

Batch size

Technology Life Cycle

Dominant Design

Non-convergent technologies

Firms participating in US integrated circuits industry

Causes of PD Failure

MPDS vs FPDS

